Patient-oriented outcome measurement in chronic diseases: Conceptual basis and empirical evidence

Main Article Content

Erik Farin
Michaela Nagl


In this paper we describe a method with which to measure patient-oriented change in chronic diseases, namely the POEM approach. It is not intended to replace standard procedures for determining the effects of interventions, but rather to expand upon them by introducing additional items and analyses that provide individualised information and patient-oriented judgments of significance. The POEM approach has three steps: 1) assessing patient health valuations prior to intervention, 2) assessing the participation relevance of changes experienced after intervention, and 3) evaluating and reporting the effects weighted according to health valuations and participation relevance.We present the fundamental idea behind the POEM approach by contrasting it with standard methods and provide examples of the operationalization of health-valuation and judgments of participation relevance. Neither the basic premise of the POEM approach nor its elements represent any genuinely new method not already discussed in the literature. What we do believe is innovative, however, is twofold, namely a) the integrated consideration of health valuation and participation relevance as a basis for measuring patient-oriented change, and b) the fact that we relate patient-centred judgments of relevance to the concept of participation, which plays a key role in chronic diseases.We summarise and evaluate the results from our empirical investigations of the POEM approach. Further research should be designed to evaluate the stability of patient preferences, and how best to deal with divergent methods used to determine preferences and relevance appraisals, some of which converge poorly.

Article Details

Person-centered care and chronic disease


Cohen, J. (1969). Statistical power analysis for the behavioral sciences (1st ed.). New York: Academic Press.

Jacobson, N.S., Truax, P. (1991). Clinical signficance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting & Clinical Psychology, 59:12-19.

Guyatt, G.H., Bombardier, C., Tugwell, P.X. (1986). Measuring disease-specific quality of life in clinical trials. CMAJ, 134(8):889-895.

Eton, D.T., Cella, D., Yost, K.J. et al. (2004). A combination of distribution- and anchor-based approaches determined minimally important differences (MIDs) for four endpoints in a breast cancer scale. Journal of Clinical Epidemiology, 57(9):898-910.

Johnston, B., Thorlund, K., Schunemann, H. et al. (2010). Improving the interpretation of quality of life evidence in meta-analyses: the application of minimally important difference units. Health and Quality of Life Outcomes, 8(1):116.

de Vet, H.C.W., Terluin, B., Knol, D.L. et al. (2010). Three ways to quantify uncertainty in individually applied "minimally important change" values. Journal of Clinical Epidemiology, 63(1):37-45.

Turner, D., Schünemann, H.J., Griffith, L.E. et al. (2010). The minimal detectable change cannot reliably replace the minimal important difference. Journal of Clinical Epidemiology, 63(1):28-36.

Terwee, C.B., Roorda, L.D., Dekker, J. et al. (2010). Mind the MIC: large variation among populations and methods. Journal of Clinical Epidemiology, 63(5):524-534.

Kemmler, G., Zabernigg, A., Gattringer, K. et al. (2010). A new approach to combining clinical relevance and statistical significance for evaluation of quality of life changes in the individual patient. Journal of Clinical Epidemiology, 63(2):171-179.

Stewart, M., Brown, J.B., Weston, W.W., McWhinney, I.R., McWilliam, C.L., Freeman, T.R. (2003). Patient-centered medicine. Transforming the clinical method (2nd ed). Abingdon: Radcliffe Medical Press.

Thorne, F.M., Morley, S. (2009). Prospective judgments of acceptable outcomes for pain, interference and activity: Patient-determined outcome criteria. Pain, 144(3):262-269.

Bradley, E.H., Bogardus, S.T., Tinetti, M.E,, Inouye, S.K. (1999). Goal-setting in clinical medicine. Social Science and Medicine, 49(2):267-278.

Meder, M., Farin, E. (2009). Akzeptanz und Verständlichkeit verschiedener Methoden der Gesundheitsbewertung bei chronisch Kranken: Willingness to pay, visuelle Analogskala und verbale Ratingskala [Acceptance and understandability of various methods of health valuations for the chronically ill: Willingness to pay, visual analogue scale and rating scale]. Gesundheitswesen, 71 (11): e1-e10.

Meder, M., Farin, E. (2011). Gesundheitsbewertungen bei Patienten mit chronisch ischämischer Herzkrankheit [Health valuations for patients with chronic ischemic heart disease]. Die Rehabilitation; 50: 222-231.

Nagl, M. & Farin, E. (in press). Die Entwicklung eines Instruments zur Erfassung der Teilhabe-Relevanz von Behandlungseffekten bei chronisch Kranken: Retest-Reliabilität und deskriptive Ergebnisse [The Development of an Instrument Assessing the Relevance of Rehabilitation Outcomes for Patient Participation: Retest Reliability and Descriptive Results]. Die Rehabilitation. (efirst:

Nagl, M. & Farin, E. (submitted). Congruence or discrepancy? Comparing patients’ health valuations and physicians’ treatment goals for rehabilitation for patients with chronic conditions. International Journal of Rehabilitation Research.

Dempster, M., Donnelly, M., O'Loughlin, C. (2004). The validity of the MacNew Quality of Life in heart disease questionnaire. Health and Quality of Life Outcomes, 2.

Höfer, S., Benzer, W., Schüssler, G., von Steinbüchel, N., Oldridge, N.B. (2003). Health-related quality of life in patients with coronary artery disease treated for angina: validity and reliability of German translations of two specific questionnaires. Quality of Life Research; 12 (2): 199-212.

Stucki, G., Cieza, A., Melvin, J. (2007). The international classification of functioning, disability and health: a unifying model for the conceptual description of the rehabilitation strategy. Journal of Rehabilitation Medicine, 39:279-285.

Philip, E.J., Merluzzi, T.V., Peterman, A., Cronk, L.B. (2009). Measurement accuracy in assessing patient’s quality of life: to weight or not to weight domains of quality of life. Quality of Life Research, 18(6):775-782.

O'Boyle, C. (1994). The schedule for the evaluation of individual quality of life (SEIQoL). International Journal of Mental Health, 23(3):3-23.

Ruta, D.A., Garratt, A.M., Leng, M., Russell, I.T., MacDonald, L.M. (1994). A new approach to the measurement of quality of life - The patient-generated index. Medical Care, 32(11):1109-1126.

Tugwell, P., Bombardier, C., Buchanan, W.W., et al. (1987) Preference Disability Questionnaire-an individualized functional priority approach for assessing improvement in physical disability in clinical trials in rheumatoid arthritis. Journal of Rheumatology, 14:446-451.

Sanchez, K., Papelard, A., Nguyen, C. et al. (2009). Patient-preference disability assessment for disabling chronic low back pain: a cross-sectional survey. Spine, 34(10):1052-1059.

Asenlöf, P., Denison, E., Lindberg, P. (2006). Idiographic outcome analyses of the clinical significance of two interventions for patients with musculoskeletal pain. Behaviour Research and Therapy, 44:947-965.

Gorbatenko-Roth, K., Levin, I., Altmaier, E., Doebbleing, B. (2001). Accuracy of health-related quality of life assessment: What is the benefit of incorporating patients' preferences for domain functioning? Health Psychology, 20:136-140.

Osoba, D., Ming-Ann, H., Copley-Merriman, C. et al. (2006). Stated Preferences of Patients with Cancer for Health-related Quality-of-life (HRQOL) Domains During Treatment. Quality of Life Research, 15(2):273-283.

Green, C., Brazier, J., Deverill, M. (2000). Valuing health-related quality of life. Pharmacoeconomics, 17(2):151-165.

Ryan, M., Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care. British Medical Journal, 320:1530-1533.

Stineman, M.G., Kurz, A.E., Kelleher, D., Kennedy, B.L. (2008). The patient's view of recovery: An emerging tool for empowerment through self-knowledge. Disability & Rehabilitation, 30(9):679-688.

Flood, C. (2010). Should "standard gamble" and "'time trade off" utility measurement be used more in mental health research? The Journal of Mental Health Policy & Economics, 13(2):65-72.

Koller, M., Ohmann, C., Lorenz, W. (2008). Utilities - eine Lösung für ein Bewertungsproblem? [Utilities: a Solution of a Decision Problem?] Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen, 102(6):379-384.

Whynes, D.K., Sach, T.H. (2007). WTP and WTA: Do people think differently? Social Science & Medicine, 65:946-957.

Turk, D.C., Dworkin, R.H., Burke, L.B. et al. (2006). Developing patient-reported outcome measures for pain clinical trials: IMMPACT recommendations. Pain, 125(3):208-215.

Craig, B.M., Busschbach, J.J.V., Salomon, J.A. (2009). Keep it simple: Ranking health states yields values similar to cardinal measurement approaches. Journal of Clinical Epidemiology, 62(3):296-305.

Craig, B.M.P., Busschbach, J.J.V., Salomon. J.A.P. (2009). Modeling Ranking, Time Trade-Off, and Visual Analog Scale Values for EQ-5D Health States: A Review and Comparison of Methods. Medical Care, 47(6):634-641.

Crosby, R.D., Kolotkin, R.L., Williams, G.R. (2003). Defining clinically meaningful change in health-related quality of care. Journal of Clinical Epidemiology, 56:395-407.

Schwartz, C.E. (2010). Applications of Response Shift Theory and Methods to Participation Measurement: A Brief History of a Young Field. Archives of Physical Medicine and Rehabilitation, 91(9): S38-S43.

Tubach, F., Ravaud, P., Baron, G. et al. (2005). Evaluation of clinically relevant states in patient reported outcomes in knee and hip osteoarthritis: the patient acceptable symptom state. Annals of the Rheumatic Diseases, 64(1):34-37.

ten Klooster, P.M., Drossaers-Bakker, K.W., Taal, E., van de Laar, M.A.F. (2006). Patient-perceived satisfactory improvement (PPSI): Interpreting meaningful change in pain from the patient's perspective. Pain, 121(1-2):151-157.

Merkesdal, S., Busche, T., Bauer, J., Mau, W. (2003). Changes in quality of life according to the SF36 Health Survey of persons with back pain six months after orthopedic in- and outpatient rehabilitation. International Journal of Rehabilitation Research, 26(3).

Kiresuk, T.J., Smith, A., Cardillo, J.E., (Eds.) (1994). Goal Attainment Scaling: Application, theory, and meassurement. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rushton, P.W., Miller, W.C. (2002). Goal attainment scaling in

the rehabilitation of patients with lower-extremity amputations: A pilot study. Archives of Physical Medicine and Rehabilitation, 83:771-775.

Farin, E. (2011). Teilhabe als Gegenstand der Versorgungsforschung: Beziehung zu verwandten Konstrukten und Übersicht über vorhandene Messverfahren [Social Participation of Patients in Health Care Research: Relations to Similar Concepts and Overview of Assessment Instruments]. Das Gesundheitswesen, 73(1): e1-e11.

Wessels, H., de Graeff, A., Wynia, K. et al. (2010). Are health care professionals able to judge cancer patients' health care preferences correctly? A cross-sectional study. BMC Health Services Research, 10(1):198.

Mannion, A., Porchet, F., Kleinstück, F. et al. (2009). The quality of spine surgery from the patient's perspective: Part 2. Minimal clinically important difference for improvement and deterioration as measured with the Core Outcome Measures Index. European Spine Journal, 18(0):374-379.

Nichol, M.B., Epstein, J.D. (2008). Separating gains and losses in health when calculating the minimum important difference for mapped utility measures. Quality of Life Research, 17(6):955-961.

Sudore, R.L., Schillinger, D., Knight, S.J., Fried, T.R. (2010). Uncertainty About Advance Care Planning Treatment Preferences Among Diverse Older Adults. Journal of Health Communication: International Perspectives, 15(1 supp 2):159-171.

Wittink, M.N., Morales, K.H., Meoni, L.A. et al. (2008). Stability of Preferences for End-of-Life Treatment After 3 Years of Follow-up: The Johns Hopkins Precursors Study. Archives of Internal Medicine, 168(19):2125-2130.

Emanuel, L.L., Emanuel, E.J., Stoeckle, J.D., Hummel, L.R., Barry, M.J. (1994). Advance Directives: Stability of Patients' Treatment Choices. Archives of Internal Medicine, 154(2):209-217.

Danis, M., Garrett, J., Harris, R., Patrick, D.L. (1994). Stability of Choices about Life-Sustaining Treatments. Annals of Internal Medicine, 120(7):567-573.

Fried, T.R., O'Leary, J., Van Ness, P., Fraenkel, L. (2007). Inconsistency Over Time in the Preferences of Older Persons with Advanced Illness for Life-Sustaining Treatment. Journal of the American Geriatrics Society, 55(7):1007-1014.

King, J., Tsevat, J., Roberts, M. (2009). Cognitive impairment and preferences for current health. Health and Quality of Life Outcomes, 7:1.

Schmitt, J., Meurer, M., Klon, M., Frick, K.D. (2008). Assessment of health state utilities of controlled and uncontrolled psoriasis and atopic eczema: a population-based study. British Journal of Dermatology, 158(2):351-359.

Bleichrodt, H., Pinto Prades, J.L. (2009). New evidence of preference reversals in health utility measurement. Health Economics, 18(6):713-726.

Terwee, C.B., Roorda, L.D., Dekker, J. et al. (2010). Mind the MIC: large variation among populations and methods. Journal of Clinical Epidemiology, 63(5):524-534.

Barrett, B., Brown, R., Mundt, M. (2008). Comparison of anchor-based and distributional approaches in estimating important difference in common cold. Quality of Life Research, 17(1):75-85.